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Abstract
The analytical solution of the Ornstein–Zernike equation with a Sogami–
Ise type closure for a multicomponent fluid discussed in our previous work
(Yasutomi and Ginoza 2000 J. Phys.: Condens. Matter 12 L605) is extended
to a more general case that

cij (r) =
∑
n=1

L∑
τ=−1

K
(n,τ)
ij zτ+1

n rτ e−znr σij < r

where cij (r) is the direct correlation function, r is the interparticle separation,
K
(n,τ)
ij and zn are constants, σij is the distance at contact of the pair (i, j) of

particles. Almost all of the interaction potentials between particles (such as
a potential due to diffuse electric double layer, van der Waals potential, steric
potential and so on) can be well approximated by the above closure. In this
sense the present analytical solution will be applicable to a large variety of
colloidal fluids under the mean-spherical-approximation (MSA).

The field of colloid and interface science has experienced a marked expansion in the last two
decades. It now covers a wide range of specialist areas such as applied biology, chemical and
pharmaceutical industries and various medical disciplines. It is also applied in the synthesis and
characterization of novel materials. In the area of physics, the structure and thermodynamical
properties of colloidal dispersions have been studied by theoretical and experimental methods
and computer-simulation techniques.

The physical properties of colloidal fluids can be obtained from the distribution (or
correlation) functions. These functions can be calculated using a number of methods (such as
perturbation theories, integral-equation methods and numerical-simulation techniques) when a
suitable interaction potential is specified. One of the most popular methods is integral-equation
methods based on the Ornstein–Zernike (OZ) equation for the correlation functions. Before
the OZ equation can be solved, we need the closure relations which relate the correlation
functions and the interparticle potentials.

So far, analytical solutions of the OZ equation have been obtained for the five types of
pair-interaction potentials:
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(1) Neutral hard-sphere interaction which describes the excluded-volume effects due to the
finite size of the colloidal particles (Henderson et al 1976, Waisman et al 1976, Thompson
et al 1980, Henderson et al 1980, Plischke and Henderson 1986).

(2) Sticky hard-sphere interaction which represents a combination of both a hard-sphere
repulsion and a very sharp, short-range attraction (Baxter R J 1968, Perram and Smith
1975, Barboy and Tenne 1979, Ginoza and Yasutomi 1996).

(3) Screened Coulombic (Yukawa) potential which describes the long-range electrostatic
repulsion between charged particles (Waisman 1973, Blum and Høye 1978, Blum 1980,
Ginoza M 1985, 1986).

(4) Sticky hard-sphere Yukawa interaction which represents a combination of a hard-sphere
repulsion, a very sharp, short-range attraction, and a Yukawa potential (Yasutomi and
Ginoza 1996)

(5) Sogami–Ise interaction which represents a combination of a hard-sphere repulsion and a
screened Coulomb plus constant potential (Yasutomi and Ginoza 2000 (YG)).

In the previous work (YG), on the basis of the mean-spherical-approximation (MSA) we
found analytical solutions of the OZ equation for systems of hard spheres with a Sogami–Ise
type closure (Sogami and Ise 1984) given by

cij (r) = −φij (r)
kBT

=
∑
n=1

L∑
τ=−1

K
(n,τ)
ij zτ+1

n rτ e−znr σij = (σi + σj )/2 < r (1)

and

gij (r) ≡ hij (r) + 1 = 0 r < σij (2)

whereL = 0, cij (r) andhij (r) are the direct and the total correlation functions for two spherical
molecules of species i and j , r is the interparticle separation, σi is the diameter of spherical
hardcore of species i, K(n,τ)

ij and zn are constants to be adjusted by physical arguments, φij (r)
is the pair-interaction potential, kBT is Boltzmann’s constant, and T is a temperature. We
used the Fourier transform method (Baxter 1968, 1970) to lead to relatively simple sets of
algebraic equations, and obtained explicit formulas for relavant quantities. The work extended
the work of Blum (1980) of the solution of the case with an arbitrary number of Yukawas
which corresponds to the above closure when L = −1. In the present letter we extend our
previous work (YG) to a more general case of arbitrary integer L.

The procedure is a generalization of our previous work (YG). The OZ equation in the
Baxter formalism is

2πrcij (r) = − d

dr
Qij (r) +

∑
l

ρl

∫ ∞

λlj

dt Qjl(t)
d

dr
Qil(r + t) (3a)

2πrhij (r) = − d

dr
Qij (r) + 2π

∑
l

ρl

∫ ∞

λjl

dt Qlj (t)(r − t)hil(|r − t |) (3b)

where ρl is the number density of species l and λlj = (σl − σj )/2. We shall obtain the Baxter
function Qij (r) by solving these equations with the closure of equations (1) and (2).

The function Qij (r) is written as (Blum and Høye 1978, Blum 1980),

Qij (r) = Q0
ij (r) +Q1

ij (r) (4a)

Q0
ij (r) = 0 r > σij or r < λji . (4b)

Substitution of equation (4a) into equation (3a) and the use of equations (1) and (4b) yield

2π
∑
n=1

L∑
τ=−1

K
(n,τ)
ij zτ+1

n rτ+1e−znr = − d

dr
Q1
ij (r) +

∑
l

ρl

∫ ∞

λlj

dt Qjl(t)
d

dr
Q1
il(r + t). (5a)
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Substitution of equation (4a) into (3b) and the use of equations (2) and (4b) yield

d

dr
Q0
ij (r) = Aj r + Bj − d

dr
Q1
ij (r)− 2π

∑
l

ρl

∫ ∞

σil

dt gil(t) t Q
1
lj (t + r) λji < r < σij

(5b)

where

Aj = 2π

(
1 −

∑
l

ρlT
(0)
lj

)
(6a)

Bj = 2π
∑
l

ρlT
(1)
lj (6b)

with

T
(n)
lj =

∫ ∞

λjl

dr rnQlj (r). (6c)

Equations (5a) and (5b) suggest the following functional form for Q1
ij (r) :

Q1
ij (r) ≡

∑
n=1

L∑
τ=−1

D
(n,τ)
ij zτ+1

n rτ+1e−znr . (7)

In fact, the direct substitution shows that equation (7) is the solution of equation (5a) if the
following equation is satisfied:

2πK(n,m−1)
ij = zn

∑
l

D
(n,m−1)
il

[
δjl − ρlQ̃

(0)
j l (izn)

]

−zn(m + 1)
∑
l

D
(n,m)
il

[
δjl + znρlQ̃

(1)
j l (izn)− ρlQ̃

(0)
j l (izn)

]

+
L∑

τ=m+1

∑
l

D
(n,τ)
il

zτ+1
n

zmn
ρl

[
(τ + 1)Cττ−mQ̃

(τ−m)
jl (izn)

−Cτ+1
τ+1−mznQ̃

(τ+1−m)
jl (izn)

]
(8)

for m = 0, 1, 2, . . . , L + 1 where D(n,τ)
il = 0 for τ � L + 1, Cnm = n!/m!(n−m)! and

Q̃
(m)
jl (s) ≡

∫ ∞

λlj

dt Qjl(t)t
m eist , (m = 0, 1, 2, . . . , L + 1). (9)

Substituting equation (7) into equation (5b) and solving the resulting differential equation
under the boundary condition Q0

ij (σij ) = 0, we obtain

Q0
ij (r) = 1

2
Aj(r

2 − σ 2
ij ) + Bj(r − σij ) +

∑
n=1

L+1∑
k=0

k∑
ξ=0

z
k−ξ
n C

(n,k)
ij k!

(k − ξ)!

[
rk−ξe−znr − σ

k−ξ
ij e−znσij

]

(10)

where

C
(n,k)
ij = −D(n,k−1)

ij + (k + 1)D(n,k)
ij +

∑
l

(L+2)−k∑
τ=1

Cτ+k−1
τ−1 D

(n,τ+k−2)
lj γ

(τ)
il (zn) (11)

with

z2−m
n γ

(m)
il (zn) ≡ 2πρlg̃

(m)
il (zn) (m = 1, 2, 3, . . . , L + 2) (12)
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g̃
(m)
il (zn) ≡

∫ ∞

σil

dx e−znx xmgil(x). (13)

From (13) and (3b), we get

2π
∑
l

m∑
ξ=0

g̃
(ξ+1)
il (s)

[
δjlδmξ − Cmξ ρlQ̃

(m−ξ)
lj (is)

]
= Ajχ

(m+1)(σij , s) + Bjχ
(m)(σij , s)

−
∑
n

L+1∑
τ=0

zτ+1
n C

(n,τ)
ij χ(m+τ)(σij , zn + s) (14)

where

χ(k)(b, a) =
∫ ∞

b

dr rke−ar =
k∑
ξ=0

1

aξ+1

k!

(k − ξ)!
bk−ξe−ab. (15)

Using (7) and (10), integration of (9) yields

e−sλlj Q̃(m)
lj (is) = 1

2
Aj*

(m+2,m)
lj (s, 0)

+Bj*
(m+1,m)
lj (s, 0) +

∑
n=1

L+1∑
k=0

k∑
ξ=0

z
k−ξ
n C

(n,k)
lj k!

(k − ξ)!
*
(m+k−ξ,m)
lj (s, zn)

+
∑
n=1

L∑
τ=−1

D
(n,τ)
lj zτ+1

n e−sλlj χ(m+τ+1)(λjl, zn + s) (16)

where

e−sλjl*(n,m)
lj (s, z) = χ(n)(λjl, z + s)− χ(n)(σjl, z + s)

−σn−mlj e−zσlj [
χ(m)(λjl, s)− χ(m)(σjl, s)

]
. (17)

As seen from (6c) and (9) we can write T (n)lj = Q̃
(n)
lj (0). Using this relation and equations

(16), (6a) and (6b) we get

Aj = 2π

+

[
1 +

1

2
ζ2βj −

∑
n=1

L∑
µ=−1

∑
l

ρlD
(n,µ)

lj H
(µ,0)
lj (zn)

]
(18)

βj = π

+
σj +

2π

+

∑
n=1

L∑
µ=−1

∑
l

ρlD
(n,µ)

lj

[
H
(µ,1)
lj (zn)− 1

2
σjH

(µ,0)
lj (zn)

]
(19)

where βj = Bj + 1
2σjAj , ζk = ∑

l ρlσ
k
l , + = 1 − πζ3/6 and

H
(µ,m)

lj (zn) = zµ+1
n

[
χ(m+µ+1)(λjl, zn)−*

(m+µ+1,m)
lj (0, zn)

]

+
µ+1∑
k=0

k∑
ξ=0

z
k−ξ
n k!

(k − ξ)!

∑
ν

*
(m+k−ξ,m)
νj (0, zn)C

µ+1
µ+1−kγ

(µ+2−k)
lν (zn). (20)

In the above derivations we used the relation ρiγ
(m)
il (zn) = ρlγ

(m)
li (zn).

We have obtained the formal solution of the OZ equation with the closure of equations
(1) and (2) on the basis of MSA. The solution Qij (r) is given by equations (4a), (4b), (7) and
(10) which are functions of two sets of parameters,D(n,µ)

ij and γ (m)ij (zn). The set of parameters

D
(n,µ)

ij can be obtained as a function of γ (m)ij (zn) from the linear equation (14) forD(n,µ)

ij when
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s = zn, and substituted into (8), to get a set of nonlinear algebraic equations for γ (m)ij (zn). A
physical branch of the solution has to be chosen from the manifold of solutions. In this stage,
we can calculate all the coefficients in the function Qij (r), and therefore, the pair correlation
functions and structural and thermodynamic properties of a multicomponent fluid.

The pair interaction potential φij (r) characterizes the structural and physical properties of
colloidal fluids. Some of the well known potentials are the potential due to the diffuse electric
double layer, the van der Waals potential, the Derjaguin–Landau–Verwey–Overbeek (DLVO)
potential and the steric potential. All of them can be well approximated by the closure of
equation (1).

As an example, we consider the case of the DLVO potential expressed as (Ginoza and
Yasutomi 1997)

φDLVO(r) = (Z∗
c e)

2

εr
e−κ(r−σc) − AH

12

[
1

x2 − 1
+

1

x2
+ 2 ln

x2 − 1

x2

]
x=r/σc

(21)

where

Z∗
c = Zc

1 + κσc/2
κ2 = 4πLB

∑
i=1,2

ρiZ
2
i LB = e2

kBT ε
. (22)

In the above equations, AH is the Hamaker constant, Zi is the valence of particle i and ε is
the dielectric constant of the neutral solvent. The subscripts c, 1, and 2 represent the colloidal
particles, counterions (microions) and coions (microions), respectively.

Using equation (1), we approximate the potential φDLVO(r) as

−φDLVO(r)

kBT
= K(1,−1)

r
e−z1r + e−z2r

L∑
τ=−1

K(2,τ )zτ+1
2 rτ . (23)

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

1.0 1.5 2.0 2.5 3.0

r/σc

φ D
L

V
O
(r

)
12

/A
(H
)

Figure 1. The DLVO interaction potential (the solid line) and its approximate potential given by
equation (23) (the circles).

As shown in figure 1, the potential φDLVO(r) (solid line) is well fitted by the right-
hand side of equation (23) (circles) where κσc = z1σc = 3, z2σc = 26.5526, K(1,−1) =
−(Z∗

c e)
2eκσc/εkBT = −100AHσc/12kBT , L = 27, and K(2,τ ) for τ = −1, 0, 1, 2, 3, . . .

and 27 are 3.50304, −5.28592, −5.23442 · 10−2, 2.67539, −1.79271, 4.19587 · 10−1,
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−3.94799·10−1, −1.10371·10−1, 1.31488, −5.45468·10−2, 4.11067·10−1, −5.32089·10−1,
−1.03259 · 10−1, −2.34657 · 10−1, 3.88707 · 10−1, 6.41650 · 10−2, −2.75798 · 10−1,
−7.17811 · 10−2, 5.01577 · 10−2, −7.39232 · 10−2, 2.54642 · 10−2, −2.62872 · 10−3,
9.27277 ·10−4, 3.01694 ·10−2, 1.30848 ·10−2, 1.15787 ·10−2, 1.88114 ·10−3, −3.37145 ·10−3

and −9.54506 · 10−3, respectively, in the units of 1014AH/(12kBT z
τ+1
2 σ τc ).

The good fit of equation (1) would not be restricted to the DLVO potential or the well
known potentials mentioned before. We believe that almost all of the pair-interaction potentials
including the potentials with soft core can be well approximated. Therefore, the present
analytical solution of the OZ equation with the closure given by equations (1) and (2) will be
applicable to a large variety of colloidal fluids under the MSA. To obtain the total correlation
function from the present solution we will need some lengthy algebra. The author thinks that
this is challenging work and will report his work in the near future.

The author is grateful to Professor M Ginoza for useful discussions.
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